1,853 research outputs found

    Fractional charge in the noise of Luttinger liquid systems

    Full text link
    The current noise of a voltage biased interacting quantum wire adiabatically connected to metallic leads is computed in presence of an impurity in the wire. We find that in the weak backscattering limit the Fano factor characterizing the ratio between shot noise and backscattering current crucially depends on the noise frequency relative to the ballistic frequency v_F/gL, where v_F is the Fermi velocity, g the Luttinger liquid interaction parameter, and L the length of the wire. In contrast to chiral Luttinger liquids, the noise is not only due to the Poissonian backscattering of fractionally charged quasiparticles at the impurity, but also depends on Andreev-type reflections of plasmons at the contacts, so that the frequency dependence of the noise needs to be analyzed to extract the fractional charge e*=e g of the bulk excitations. We show that the frequencies needed to see interaction effects in the Fano factor are within experimental reach.Comment: 9 pages, 4 figures, conference proceedings of Fluctuations and Noise 2005, Austin, Texa

    Appearance of fractional charge in the noise of non-chiral Luttinger liquids

    Get PDF
    The current noise of a voltage biased interacting quantum wire adiabatically connected to metallic leads is computed in presence of an impurity in the wire. We find that in the weak backscattering limit the Fano factor characterizing the ratio between noise and backscattered current crucially depends on the noise frequency ω\omega relative to the ballistic frequency vF/gLv_F/gL, where vFv_F is the Fermi velocity, gg the Luttinger liquid interaction parameter, and LL the length of the wire. In contrast to chiral Luttinger liquids the noise is not only due to the Poissonian backscattering of fractionally charged quasiparticles at the impurity, but also depends on Andreev-type reflections at the contacts, so that the frequency dependence of the noise needs to be analyzed to extract the fractional charge e=ege^*=e g of the bulk excitations.Comment: 4 pages, 2 figures, final version, to appear in PR

    The effects of aggregation and protein corona on the cellular internalization of iron oxide nanoparticles

    Full text link
    Engineered inorganic nanoparticles are essential components in the development of nanotechnologies. For applications in nanomedicine, particles need to be functionalized to ensure a good dispersibility in biological fluids. In many cases however, functionalization is not sufficient : the particles become either coated by a corona of serum proteins or precipitate out of the solvent. In the present paper, we show that by changing the coating of iron oxide nanoparticles from a low-molecular weight ligand (citrate ions) to small carboxylated polymers (poly(acrylic acid)), the colloidal stability of the dispersion is improved and the adsorption/internalization of iron towards living mammalian cells is profoundly affected. Citrate-coated particles are shown to destabilize in all fetal-calf-serum based physiological conditions tested, whereas the polymer coated particles exhibit an outstanding dispersibility as well as a structure devoid of protein corona. The interactions between nanoparticles and human lymphoblastoid cells are investigated by transmission electron microscopy and flow cytometry. Two types of nanoparticle/cell interactions are underlined. Iron oxides are found either adsorbed on the cellular membranes, or internalized into membrane-bound endocytosis compartments. For the precipitating citrate-coated particles, the kinetics of interactions reveal a massive and rapid adsorption of iron oxide on the cell surfaces. The quantification of the partition between adsorbed and internalized iron was performed from the cytometry data. The results highlight the importance of resilient adsorbed nanomaterials at the cytoplasmic membrane.Comment: 21 pages, 11 figures, accepted at Biomaterials (2011

    Using Chandra to Unveil the High-Energy Properties of the High-Magnetic Field Radio Pulsar J1119-6127

    Full text link
    (shortened) PSR J1119-6127 is a high magnetic field (B=4.1E13 Gauss), young (<=1,700 year-old), and slow (P=408 ms) radio pulsar associated with the supernova remnant (SNR) G292.2-0.5. In 2003, Chandra allowed the detection of the X-ray counterpart of the radio pulsar, and provided the first evidence for a compact pulsar wind nebula (PWN). We here present new Chandra observations which allowed for the first time an imaging and spectroscopic study of the pulsar and PWN independently of each other. The PWN is only evident in the hard band and consists of jet-like structures extending to at least 7" from the pulsar, with the southern `jet' being longer than the northern `jet'. The spectrum of the PWN is described by a power law with a photon index~1.1 for the compact PWN and ~1.4 for the southern long jet (at a fixed column density of 1.8E22/cm2), and a total luminosity of 4E32 ergs/s (0.5-7 keV), at a distance of 8.4 kpc. The pulsar's spectrum is clearly softer than the PWN's spectrum. We rule out a single blackbody model for the pulsar, and present the first evidence of non-thermal (presumably magnetospheric) emission that dominates above ~3keV. A two-component model consisting of a power law component (with photon index ~1.5--2.0) plus a thermal component provides the best fit. The thermal component can be fit by either a blackbody model with a temperature kT~0.21 keV, or a neutron star atmospheric model with a temperature kT~0.14 keV. The efficiency of the pulsar in converting its rotational power, Edot, into non-thermal X-ray emission from the pulsar and PWN is ~5E-4, comparable to other rotation-powered pulsars with a similar Edot. We discuss our results in the context of the X-ray manifestation of high-magnetic field radio pulsars in comparison with rotation-powered pulsars and magnetars.Comment: 26 pages including 3 tables and 7 figures. Accepted for publication in Ap
    corecore